Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 94: 172-182, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408293

RESUMO

This paper provides compound-specific toxicology limits for 20 widely used synthetic reagents and common by-products that are potential impurities in drug substances. In addition, a 15 µg/day class-specific limit was developed for monofunctional alkyl bromides, aligning this with the class-specific limit previously defined for monofunctional alkyl chlorides. Both the compound- and class-specific toxicology limits assume a lifetime chronic exposure for the general population (including sensitive subpopulations) by all routes of exposure for pharmaceuticals. Inhalation-specific toxicology limits were also derived for acrolein, formaldehyde, and methyl bromide because of their localized toxicity via that route. Mode of action was an important consideration for a compound-specific toxicology limit. Acceptable intake (AI) calculations for certain mutagenic carcinogens assumed a linear dose-response for tumor induction, and permissible daily exposure (PDE) determination assumed a non-linear dose-response. Several compounds evaluated have been previously incorrectly assumed to be mutagenic, or to be mutagenic carcinogens, but the evidence reported here for such compounds indicates a lack of mutagenicity, and a non-mutagenic mode of action for tumor induction. For non-mutagens with insufficient data to develop a toxicology limit, the ICH Q3A qualification thresholds are recommended. The compound- and class-specific toxicology limits described here may be adjusted for an individual drug substance based on treatment duration, dosing schedule, severity of the disease and therapeutic indication.


Assuntos
Brometos/normas , Carcinógenos/normas , Contaminação de Medicamentos , Indicadores e Reagentes/normas , Mutagênicos/normas , Animais , Brometos/classificação , Brometos/toxicidade , Carcinógenos/toxicidade , Indústria Farmacêutica , Humanos , Indicadores e Reagentes/toxicidade , Mutagênicos/toxicidade , Medição de Risco
3.
Mutat Res ; 752(2): 99-118, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23262374

RESUMO

Genetic toxicity testing is used as an early surrogate for carcinogenicity testing. Genetic toxicity testing is also required by regulatory agencies to be conducted prior to initiation of first in human clinical trials and subsequent marketing for most small molecule pharmaceutical compounds. To reduce the chances of advancing mutagenic pharmaceutical candidates through the drug discovery and development processes, companies have focused on developing testing strategies to maximize hazard identification while minimizing resource expenditure due to late stage attrition. With a large number of testing options, consensus has not been reached on the best mutagenicity platform to use or on the best time to use a specific test to aid in the selection of drug candidates for development. Most companies use a process in which compounds are initially screened for mutagenicity early in drug development using tests that require only a few milligrams of compound and then follow those studies up with a more robust mutagenicity test prior to selecting a compound for full development. This review summarizes the current applications of bacterial mutagenicity assays utilized by pharmaceutical companies in early and late discovery programs. The initial impetus for this review was derived from a workshop on bacterial mutagenicity screening in the pharmaceutical industry presented at the 40th Annual Environmental Mutagen Society Meeting held in St. Louis, MO in October, 2009. However, included in this review are succinct summaries of use and interpretation of genetic toxicity assays, several mutagenicity assays that were not presented at the meeting, and updates to testing strategies resulting in current state-of the art description of best practices. In addition, here we discuss the advantages and liabilities of many broadly used mutagenicity screening platforms and strategies used by pharmaceutical companies. The sensitivity and specificity of these early mutagenicity screening assays using proprietary compounds and their concordance (predictivity) with the regulatory bacterial mutation test are discussed.


Assuntos
Bactérias/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica , Testes de Mutagenicidade , Mutagênicos/toxicidade , Mutação/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...